Airplane on a Treadmill Explained
1) We all know that planes need velocity relative to the air to gain lift.
Many who are in the no-takeoff camp stick to the relative airspeed argument, and assume that the takeoff camp just doesn’t understand the concept. Truth is, this point was never up for debate. It’s another concept entirely that’s key to solving this problem.
2) The best way to explain the solution is this: No treadmill in the world can stop an airplane from moving forward.
This is the simplest, most concise way I know to convey the reason why the plane will take off. Think about it. A plane moves because it pulls itself through the air, via propellers, jet engines, rockets, whatever. The wheels are free-rolling; they are not driven at all. Thus, a treadmill on the ground that matches the plane’s speed will not actually stop the plane from being able to propel itself forward. A good analogy is this: Imagine you are on a treadmill, and that you are wearing roller skates. You grasp the handlebars and pull yourself forward. Easy. The treadmill could be off, it could be at walking speed, running speed, whatever, it doesn’t matter. Because the method of your propulsion is not the wheels, but your arms pulling on the handlebars, you move forward regardless of the treadmill speed. Likewise, since a plane is pretty much pulling on the air (like you pull on the handlebars), it will move forward regardless of the treadmill’s activity. If it moves forward, it can take off. Period.